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We have used magnetic resonance imaging to study the structure of and convection
within a solidifying mushy layer formed from an aqueous sucrose solution cooled
from above. We focus on the situation in which dissolution channels, known as
chimneys, are created by the action of buoyancy-driven convection. We have obtained
high-resolution images of the microstructure formed by individual ice platelets and
coarser-grained images that average over the platelets to show the geometry of the
dissolution channels. We observe that the chimneys are branched and occur only in
the lower part of the mushy layer. By acquiring low-resolution images rapidly, we
have made detailed measurements of the thickness of the mushy layer, its porosity
distribution and the number and total area of the chimneys. The mushy layer is seen
to grow in a self-similar manner until internal convection begins, whereafter the solid
fraction increases in the lower part of the layer.

1. Introduction
When a binary alloy is cooled below its liquidus temperature, one component

solidifies preferentially, creating a porous matrix of solid crystals, with a complex
small-scale geometry, bathed in a liquid phase more concentrated in the second
component. This two-phase region comprising the solid matrix and the interstitial
residual melt is called a mushy layer. For situations in which a binary alloy is cooled
either from an upper or a lower horizontal boundary, Huppert & Worster (1985)
showed that six different regimes of convection are possible depending on the relative
buoyancy of interstitial melt and on the position of the cooling plate. In this study,
we work with a system in which the density of the residual melt increases as the
temperature decreases and its concentration correspondingly increases, and we cool it
from the top. This configuration is both thermally and compositionally unstable, with
the liquid inside the mushy layer being more dense than that below it. Convection can
develop in the mushy layer, leading by dissolution to the formation of channels free
of crystals, called chimneys, in which downflow occurs (Copley et al. 1970; Worster
2000).

Similar dynamic effects may occur in the Earth’s core, within magma reservoirs and
within sea ice. The situation we study here is similar to the drainage of brine through
brine channels within sea ice (Wettlaufer, Worster & Huppert 1997). Similar effects
occur during the casting of metallic alloys (Copley et al. 1970; Kurz & Fischer 1986).
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Previous experimental studies, such as those by Huppert & Worster (1985), Chen &
Chen (1991), Tait & Jaupart (1992), Bergman et al. (1997) and Wettlaufer et al. (1997)
have tried to describe what is happening inside the mushy layer during solidification
by indirect means, such as by studying the evolution of the bulk liquid properties (such
as concentration or total volume) or by using local thermal probes to deduce the mean
evolution of the mush. Observations have also been made of the interface between the
liquid and the mushy layer to determine properties of the crystal matrix or the first
appearance of chimneys (Tait, Jahrling & Jaupart 1992). Many measurements have
been made a posteriori, once solidification has ceased. For example, measurements of
local porosity, bulk composition and the dimensions of chimneys have been obtained
by cutting the frozen mushy layer into slices (Turner & Gustafson 1981; Bergman et al.
1997; Turner, Huppert & Sparks 1986; Cottier, Eicken & Wadhams 1999). But this
gives information only at the final instant. More sophisticated techniques have been
used, such as X-ray tomography. With this technique, Chen (1995) obtained a short
time sequence of the porosity evolution inside the mushy layer during solidification
after the first appearance of chimneys and found structures similar to the C-profiles
commonly measured in sea ice (e.g. Untersteiner 1968). Conductivity measurements
have also been made to deduce porosities (Chiareli & Worster 1992; Notz, Wettlaufer
& Worster 1997; Shirtcliffe, Huppert & Worster 1991). Here, we present a study of
the evolution of the structure and porosity of the growing mushy layer as well as the
chimneys during the solidification process using magnetic resonance imaging (MRI).

The MRI technique is being increasingly used in non-medical applications. MRI, in
common with all magnetic resonance (MR) techniques, has five particular attributes
advantageous to studying multi-component, multi-phase systems: it is non-invasive;
optically opaque systems can be studied; different chemical species and phases can be
identified and quantified; transport measurements can be made without the need for
introduction of any tracer; and the direct use of the Fourier transform of the time-
domain response of the whole system means that no model for image reconstruction
is required.

MRI has been used previously to measure properties of sea ice (Callaghan
et al. 1999; Eicken et al. 2000) and salt-water ice (Menzel et al. 2000) but most
measurements were taken after solidification. Here we obtain direct, highly resolved
observations and quantitative measurements of the evolution of structure and porosity
inside the mushy layer during solidification.

This is the first experimental study of mushy layers to use sucrose solutions, which
we chose (rather than salt water, for example) because it gives a good MRI signal
owing to its high density of hydrogen nuclei and low dielectric constant, the latter
enabling good tuning of the spectrometer receiver coil. We describe their physical
properties in § 2. The experimental apparatus is briefly described in § 3, and the
fundamentals of MRI as they relate to multi-phase systems are outlined in § 4. MR
images revealing the microstructure and channel geometry within the mushy layer are
presented in § 5. Some theoretical considerations in § 6 aid the interpretation of our
quantitative measurements, which are discussed in detail in § 7. Our main conclusions
are drawn in § 8.

2. Properties of sucrose–water solutions
The equilibrium phase diagram of the sucrose–water solution is presented in figure 1.

The curves of sucrose solubility and the liquidus, which intersect at the eutectic point
(TE = −13.9 ◦C), are shown in this figure as well as the curve of sucrose supersolubility.
The liquidus curve defines the equilibrium between the saturated solution and ice.
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Figure 1. Phase diagram of the sucrose–water system showing the liquidus, solubility and
supersolubility curves and the hypothetical eutectic point (E).

Below the eutectic temperature, ice continues to form whereas sucrose concentrates
in a supersaturated solution. This thermodynamically unstable state is caused by the
increase in viscosity and by limitation of movement of the molecules which worsen
the conditions for formation of stable sugar-crystal nuclei. The eutectic point is then
an extrapolated intersection between the sucrose solubility curve and liquidus curve
and has no real experimental existence.

We have fitted data from Mathlouthi & Reiser (1995) to represent the liquidus
curve by

T = T�(c) ≡ −5.176 c − 13.27 c2 + 24.16 c3 − 75.52 c4 (2.1)

for 0<c < 0.7, where T� (◦C) is the temperature of the freezing point of sucrose
solution and c is the mass fraction of sucrose. The corresponding dependence between
the concentration of sucrose c and the temperature T , for −21 ◦C<T < 0 ◦C, is fitted
by

c = c�(T ) ≡ 3.2355 × 10−3 − 1.6885 × 10−1T − 2.9460 × 10−2T 2 − 3.3994 × 10−3T 3

− 2.2722 × 10−4T 4 − 7.9522 × 10−6T 5 − 1.1224 × 10−7T 6. (2.2)

The density of the solution increases monotonically with sucrose concentration and
very slightly as the temperature decreases. We use the equation given by Ruddick &
Shirtcliffe (1979), describing the solution density as a function of concentration and
temperature, to obtain an approximation for the density at the liquidus concentration
as a function of temperature alone (figure 2a). This plot can be fitted by the 6th-order
polynomial

ρ� = 1.0011 × 10+3 − 6.82251 × 10+1T − 9.2800 × T 2 − 8.7004 × 10−1T 3

− 4.7214 × 10−2T 4 − 1.3397 × 10−3T 5 − 1.53270 × 10−5T 6. (2.3)

Sucrose–water solutions are well-represented as being Newtonian at all tempera-
tures and concentrations. The viscosity of the sucrose–water solutions increases
strongly with the sucrose concentration and as the temperature decreases. The model
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Figure 2. (a) Density against temperature at the liquidus concentration: the dashed line
represents the equation given by Ruddick & Shirtcliffe (1979) extrapolated at the liquidus
concentration and the full line represents equation (2.3). (b) Viscosity (on a logarithmic scale)
against temperature at the liquidus concentration: the dashed line represents the model given
in Mathlouthi & Reiser (1995) and the full line is (2.5).

given in Mathlouthi & Reiser (1995) is represented by

log µ = 22.46N − 0.114 + ψ(1.1 + 43.1N1.25), (2.4)

where µ is the dynamic viscosity measured in mPa s, N = 100c/(1900 − 1800c) is the
mole fraction of sucrose, c is the concentration, ψ = (30 − T )/(91 + T ) and T is the
temperature (◦C). This equation is extrapolated to calculate the dynamic viscosity at
the liquidus concentration as a function of temperature (figure 2b). This plot can be
fitted approximately in the range −17.5 < T < 0 by an exponential function

µ� = µ0e
−T/Tµ = 1.77e−T/1.92, (2.5)

with a maximum error of 15 %.
The viscosity is high at low temperature and high concentrations. For example,

it is approximately 10 000 times the viscosity of water at −17.5 ◦C at the liquidus
concentration. This inhibits the onset of convection, which allows a longer period in
which to study the evolution of the mushy layer prior to the formation of chimneys
compared with experiments in which ammonium–chloride solutions are used (Chen
& Chen 1991).

We consider the solid density to be constant and given by ρs = 916.2 kgm−3. We
also consider the following quantities to be independent of the temperature and
phase: the specific heat capacity cp ≈ 3 kJ kg−1, the latent heat L ≈ 334 kJ kg−1 and
the thermal diffusivity κ ≈ 1.4 × 10−7 m2 s−1. These values are taken to represent both
solid- and liquid-phase properties.

3. The experimental apparatus
The experimental apparatus consisted of a long cylindrical Perspex tube and a

surrounding glass jacket that fitted snugly in the 6 cm diameter core of the magnet of
an MR instrument. The working section of the tube had an internal diameter of 3.7 cm
and depth of 18 cm, and was filled with a solution of sugar and water (figure 3). The
cylindrical glass jacket had an internal circulation of a water–ethylene-glycol solution
at −3 ◦C to insulate the experimental section from ambient temperatures. The tank
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Figure 3. Sketch of the experimental set-up placed within the core of the MRI apparatus.

c0 0.1 0.2 0.2 0.2 0.3 0.3 c0 0.1 0.1 0.2 0.2 0.3 0.4
Tb (◦C) −5 −20 −5 −3 −10 −7 Tb (◦C) −20 −20 −20 −20 −20 −20

Table 1. Laboratory experiments performed in the cubic (left) and the cylindrical (right) tank.

was cooled from the top via a 2 mm thick glass plate in contact with a circulating
water–ethylene-glycol mixture at −20 ◦C, which is well below the liquidus temperature.
We used a glass plate instead of a metal plate (which would provide more efficient
heat transfer) because metal generates strong signal disturbances in MRI. However,
the thermal conductivity of glass (approximately 1Wm−1 K−1) is sufficiently high to
allow horizontally homogenous cooling.

Complementary experiments were performed in the laboratory using the same
apparatus as in the MRI experiment, but held in ambient air (around 20 ◦C), as
well as a more standard apparatus consisting of a cubic tank with sides of 20 cm.
This tank was made of Perspex with a brass cooling plate through which thermally
regulated ethylene glycol was circulated. This set-up allowed us to investigate a bigger
volume with better thermal insulation (performed with thick polystyrene blocks). We
monitored the time evolution of the mush–liquid interface as well as the temperature
at different positions in the tank (0, 0.6, 2.7, 5.7, 8.8, 11.9,14.8 and 16.8 cm from the
cooling plate).

We performed six experiments in each geometry, as reported in table 1, with dif-
ferent initial concentrations c0 and top temperatures Tb.

4. Magnetic resonance imaging
The general principles of MRI are briefly described in the following three para-

graphs. The remainder of this section gives specific details of the MRI set-up we used.
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An understanding of the experimental results (§ 5 onwards) does not rely on these
details.

Two different types of MR data are presented. First, MR microimaging is used
to identify the phase evolution of the system and discriminate bulk solution, mushy
layer, crystal structure and the location of chimneys. From these data the porosity
distribution within the mushy layer is obtained. Secondly, the velocity of the liquid
within chimneys is measured using MR velocity imaging methods. For an introduction
to the principles of MR techniques, the reader is referred to excellent texts by
Callaghan (1991) and Kimmich (1997). There are also reviews of the application of
MR techniques to studies of fluid mechanics (Fukushima 1999), the development of
fast imaging sequences to study non-medical systems (Mantle & Sederman 2003),
and the use of combined MR spectroscopy, diffusion and imaging methods to study
physical and chemical processes over multiple length scales (Gladden, Mantle &
Sederman 2004).

The physical principle upon which MR measurement is based is that when a
nucleus of non-zero spin is placed in a magnetic field B0 (typically a superconducting
magnetic field of 2–10 T), its nuclear-spin angular momentum energy levels are made
non-degenerate and the spin axis is caused to precess. By exposing the system to
electromagnetic energy in the radio-frequency (r.f.) range, a resonant absorption
occurs between these nuclear-spin energy levels. The resonant precessional frequency
ω0 is proportional to the strength of the magnetic field B0 used in the experiment,

ω0 = γB0, (4.1)

where γ is the gyromagnetic ratio, which is an isotope-specific property. The return of
the spin system to equilibrium is monitored as a decaying induced voltage detected by
a receiver coil placed around the sample. To perform an MRI experiment, a spatially
varying magnetic field is imposed on the sample in addition to the large static field B0

so that the resonance frequency of species within the sample becomes a function of
position and the data can thereby be spatially resolved. The measurement is calibrated
such that the relationship between resonance frequency and spatial position is known.

In this study we have a complex multi-phase system in which the same chemical
species may be present in one or more phases. Discrimination between phases and
quantification of porosity are achieved by exploiting the contrast of nuclear-spin
relaxation times between phases. Following the application of the r.f. excitation pulse,
the nuclear-spin system has excess energy. The return to thermal equilibrium is
characterized by two relaxation times: the spin–lattice relaxation time T1; and the
spin–spin relaxation time T2. The former characterizes the energy exchange between
the excited spin and the surrounding physical environment (i.e. the lattice), while the
latter characterizes the loss of phase coherence within the spin system itself. Both are
influenced by the physico-chemical environment of the molecules being studied. In all
the systems we studied, T1 was less than 1 s, ranging from about 900 ms for a 10 wt %
(mass fraction 0.1) sucrose solution to about 220 ms for a 69.6 wt % solution. In all
image acquisitions, recycle times were 3 s, and therefore signal contrast arising from
T1 effects is negligible. Contrast in our images is therefore based entirely on T2.

All imaging experiments were performed on a Bruker Spectrospin DMX 200, 4.7 T
vertical-bore magnet using a birdcage r.f. coil of length and internal diameter 6.4 cm.
1H images were acquired at a frequency of 199.7 MHz. Spatial resolution was achieved
using shielded gradient coils providing a maximum gradient strength of 13.50 G cm−1.
The T1 characteristics of the system were measured using inversion recovery methods
and the T2 characteristics were measured using CPMG and Hahn-echo methods
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Figure 4. (a) Schematic of the pulse sequence used for the micro-imaging studies. In this
spin-echo sequence both pulses are slice selective so that multiple slices can be acquired
without increasing the image acquisition time. (b) Schematic of pulse sequence used for
velocity images. Again slice-selective pulses are used throughout so that multi-slice techniques
can be used. Two values of the velocity gradient g were used and a homospoil gradient was
applied between the 2nd and 3rd r.f. pulses.

(Callaghan 1991). Images were acquired using a standard multi-slice spin-echo pulse
sequence (figure 4). This enables several parallel images to be acquired in the time
normally taken to acquire a single image. The π/2 r.f. excitation pulse and π refocusing
pulse were both Gaussian-shaped selective r.f. pulses, 512 µs in duration and an
acquisition width of 200 kHz was used.

In the microimaging studies (figure 6 for example) discrimination between bulk
solution, mushy layer and chimneys is achieved because of the very short T2 value
( ∼ 15 µs) characterizing the solid phase. Since an echo time of 2.5 ms is used in all
imaging experiments, negligible signal intensity is obtained from the solid. Thus, signal
is only acquired from the liquid phase, and the signal intensity within the mushy layer
is proportional to the fraction of solid present within any given image pixel.

The signal intensity is additionally sensitive to the sucrose concentration in the
residual liquid, owing predominantly to the decrease in molecular mobility of sucrose,
which reduces the T2 values characterizing the system. Independent measurements of
signal attenuation were made on sucrose solutions of known concentrations held at
their liquidus temperature for 15 minutes before the measurements were taken. The
spin-echo time in these calibration experiments was the same as in the experiments to
measure porosity. The calibration experiments enable us to determine a multiplicative
correction to apply in our quantitative evaluations of porosity (figure 5). Note that the
multiplicative correction is close to 1 and led to less than 10 % error for temperatures
above −13 ◦C. It can be represented by the polynomial

Ccor = 9.9951 × 10−1 + 1.6172 × 10−2T + 7.6525 × 10−3T 2

+ 9.9256 × 10−4T 3 + 4.3047 × 10−5T 4, (4.2)
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Figure 5. Multiplicative correction applied to the low-resolution data to obtain the
quantitative porosity. The curve corresponds to the polynomial fit given in (4.2).

High resolution Medium resolution Low resolution

In-plane resolution 98 µm × 98 µm 190 µm × 190 µm 780 µm × 780 µm
Slice thickness 0.5mm 1mm 2mm
Inter-slice separation 4mm 2mm 4mm
Data array xy 512 × 512 256 × 256 64 × 64
Data array zx 1024 × 512 512 × 256 128 × 64
Acquisition time 43 min 13 min 3.2 min

Table 2. Parameters of the magnetic resonance images.

so that the liquid fraction is given by

χ = CcorI/I0, (4.3)

where I is the measured signal intensity and I0 is the intensity measured in the fully
liquid region.

Images were acquired for transverse (i.e. horizontal) and vertical sections through
the sample at three different spatial resolutions: high-resolution images were used to
capture details of the crystal structure within the mushy layer; medium-resolution
images showed the structure of the dissolution channels (chimneys); and rapid, low-
resolution images were used to measure the temporal evolution of the local mean
solid fraction distribution. Details are shown in table 2.

The principles of MR transport measurements are discussed in detail by Fukushima
(1999). A number of approaches exist but the most robust and quantitative are those
based on ‘phase-shift’ (or ‘pulsed gradient’) methods. In summary, the application of
a pulsed magnetic field gradient at the beginning of an experiment encodes a given
spin with a ‘label’ describing its position along the direction of the applied gradient.
At a time � later, referred to as the observation time, a second pulsed gradient
is applied. The net effect of applying these two gradients is to introduce a phase
shift in the orientation of the nuclear spin system which is directly related to the
distance travelled in the direction of the applied gradients. By careful selection of the
magnitude of the applied field gradients and the observation time used between the
two pulsed gradients, velocities from approximately 10−1 to 1m s−1 can be measured.

In our velocity imaging experiments the echo time TE was 10.3 ms, while the
observation time � was 200 ms . Two values of the pulsed magnetic field gradient
g were used, of opposite polarities: −6.5 and +5.5 G cm−1, both with a duration δ
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Figure 6. Platelet structure of the ice in the mushy layer, viewed from (a) vertical and (b)
horizontal slices obtained using the highest resolution (98 µm × 98 µm) for a solution with an
initial concentration c0 = 0.2.

of 2 ms. Opposite polarities of similar magnitude were selected to minimize diffusive
attenuation (proportional to the square of the gradient) while maximizing the phase
shift between the two velocity-encoded images. The recycle time was 4 s and the signal
was averaged over two scans, giving a total data acquisition time of 68 min. The field
of view is 50 mm × 50 mm, recorded as a 256 × 256 pixel array, thereby yielding an
in-plane spatial resolution of 195 µm × 195 µm. The slice thickness was 2 mm.

The contributions of magnetic susceptibility to T2 were found to be negligible.

5. Structural observations
As we cooled the sample below the liquidus temperature, a mushy layer developed

with a solid phase made of pure ice. The liquid phase corresponded to a mixture
of sucrose and water more concentrated in sucrose than initially. Because we cooled
the tank from the top and the liquid density increases with sugar concentration,
the system became unstable and began to convect, which led to the formation of
chimneys. The MRI allowed us to follow directly what was happening locally inside
the mushy layer during solidification.

Once the mushy layer had grown for several hours and its evolution had slowed,
we could distinguish the ice structure using the highest resolution (98 µm × 98 µm),
as can be seen in figure 6, which shows a vertical and a horizontal slice in an
experiment with an initial concentration c0 = 0.2. Figure 6(b) shows a brighter region
(more liquid) around the edges of the sample and more chimneys there. This image
was taken before the addition of the cooling jacket. Later experiments, using the
cooling jacket, were more uniform horizontally both in mean intensity and in number
density of chimneys (see figure 7, for example). In the vertical slice, the mushy layer is
the dark striated region and the pure liquid is the light, homogeneous region below.
The horizontal slice is taken just above the mush–liquid interface. It can be readily
distinguished in both images that the ice forms approximately vertical platelets with
a typical width of about 200 µm. Some liquid-filled channels (chimneys), a millimetre
or so across, can also be seen in the horizontal slice. Note that the geometry of the
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Figure 7. Sequence of horizontal slices (resolution 190 µm × 190 µm) for a solution with an
initial concentration c0 = 0.2 after about 2.8 hours of solidification for different position into
the sample. The scale is given by the cylinder diameter which is 3.7 cm. The distances from the
cooling plate, from left to right and top to bottom, range from 1mm to 39mm, 2mm apart.

channels seems largely unaffected by the platelet structure of the ice crystals, which
was also noted by Wettlaufer et al. (1997) in the context of sea ice.

Using the medium resolution (190 µm × 190 µm), we obtained precise images of the
chimneys, when they occur, in vertical and horizontal slices. Figure 7, corresponding to
a solution with an initial concentration c0 = 0.2 after about 2.8 hours of solidification,
shows the typical images obtained in horizontal slices, 2 m apart, from the top (inside
the mushy layer) to the bottom (inside the liquid).

The first slice is in the mush, 1 mm away from the cooling plate. The image is
quite dark which shows that the mush has quite a small porosity. Then, as we move
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Figure 8. Time sequence of a vertical slice (resolution 190 µm × 190 µm) located in the centre
of the cylinder for a solution with an initial concentration c0 = 0.2. Above the white line, there
is no information because the whole sample was translated upwards. The scale is given by the
cylinder diameter which is 3.7 cm.

through the sample towards the liquid, the images become lighter, which shows that
the mush is more porous. The slices at 35, 37 and 39 mm away from the cooling plate
are in the liquid (which appears bright in the MRI images).

The chimneys can be easily identified: they appear as bright disks because they are
full of liquid. In contrast with previous observations (Chen & Chen 1991; Chen 1995),
in different systems, the chimneys do not span the full depth of the mushy layer.
Indeed, they are visible only from 17 mm away from the cooling plate. Moreover,
they seem to have a larger diameter close to the mush–liquid interface.

In figure 8, a time sequence of the evolution of a central vertical slice is shown
for a solution with an initial concentration c0 = 0.2. During the first half hour, the
mushy layer grows without any chimneys. Then, after about 3 hours, chimneys can
be readily distinguished, growing with the mushy layer. This delay can be explained
in terms of the increasing Rayleigh number associated with the mushy layer as it
thickens (Wettlaufer et al. 1997). An interesting feature is that the chimneys appear
to be highly branched. This behaviour was also found by Tait & Jaupart (1992), who
observed that at low solution viscosities the chimneys penetrate the whole mush and
have a roughly constant diameter whereas at higher solution viscosities they do not
always penetrate the whole mush but broaden out into a ‘root’ structure.

The MRI thus provides interesting observations of the different scale of structures
within the mushy layer. Furthermore, quantitative information of the local porosity
distribution within the mushy layer can be obtained. Using the low-resolution data
(780 µm × 780 µm per pixel), we obtained the horizontally averaged porosity as a
function of vertical position. In order to obtain accurate porosity values from the
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c0 t (h:min)

0.1 0:00, 0:09, 0:18, 0:27, 0:36, 0:46, 0:55, 1:04, 1:12, 1:21, 1:30, 1:39,

1:47, 2:14, 2:22, 2:49, 2:58, 3:24, 3:33, 3:59, 5:16, 5:43, 6:52, 7:46,

9:50, 10:00, 11:19, 12:13, 13:32, 14:26, 15:42, 16:37, 17:56

0.2 0:10, 0:22, 0:30, 1:25, 1:57, 2:05, 2:29, 2:38, 3:02, 3:11, 3:44, 4:11

5:22, 6:01, 7:11, 7:50, 9:01, 9:40, 10:51, 11:30, 12:40, 13:19, 14:30, 15:08

0.3 0:09, 0:18, 0:28, 0:37, 0:46, 0:55, 1:04, 1:12, 1:22, 1:30, 1:57, 2:05, 2:32, 2:40, 3:07

0.4 0:09, 0:18, 0:27, 0:36, 0:45, 0:54, 1:04, 1:12, 1:35, 1:43, 2:05, 2:25, 2:53, 3:03, 3:19, 4:10

Table 3. Times in hours and minutes at which porosity measurements were made by MRI
for four experiments with different initial concentrations c0.

z
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t ~ 1 h

t ~ 1 h
t ~ 1 h

t ~ 1 h

t ~ 17 h
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t ~ 3 h

t ~ 15 h
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0 0
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Figure 9. Mean porosity χ , averaged horizontally, as a function of vertical position z from
the bottom of the cooling plate at different times and for the four initial sucrose concentrations
c0 = 0.1, 0.2, 0.3 and 0.4. There are differences of two hours between successive curves and the
5 h curve is missing from the c0 = 0.1 solution.

MRI data, account had to be taken of the local interstitial sucrose concentration.
This was deduced by assuming that the interstitial liquid was in local thermodynamic
equilibrium and that the temperature field in the mushy layer was linear, and by using
the correction factor displayed in figure 5. The different times at which the porosity
data were taken are show in table 3.

In figure 9, we present the horizontally averaged porosity as a function of the
vertical position inside the mushy layer for different times and the four initial sucrose
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Figure 10. Temperature at different positions in the cooled tank. (a) c0 = 0.2 aqueous sucrose
solution in a cubic tank, with the cooling plate at Tb = −20 ◦C. The different curves correspond
to different positions in the tank from bottom to top (0, 0.6, 2.7, 5.7, 8.8, 11.9,14.8 and 16.8 cm
from the cooling plate). (b) Cylindrical tank, liquid temperature for c0 = 0.1 and c0 = 0.4,
cooled at −20 ◦C with the cooling jacket at −3 ◦C. The dashed lines represent the respective
liquidus temperatures.

concentrations c0 = 0.1, 0.2, 0.3 and 0.4. There is 2 hours difference between successive
curves. These curves are qualitatively similar to those found in previous studies
(Shirtcliffe et al. 1991; Chen 1995). Notice that the growth rate of the mushy layer
slows down with time. Also, there is faster growth in the solutions that were initially
less concentrated, and these form mushy layers of lower porosity.

6. Theoretical considerations
Some essential theoretical ideas assist with the interpretation and analysis of our

data. We represent the mushy layer as a continuum, with local mean volume fraction
of solid φ and porosity χ = 1 − φ. We denote the mass concentration of sucrose in
the interstitial liquid by c and the temperature by T . The governing equations inside
the mushy layer are given by local conservation of heat, mass and solute and Darcy’s
equation for flow through porous media (Tait & Jaupart 1992; Chiareli & Worster
1992; Worster 2000).

The growth of the mushy layer is determined principally by thermal balances
(Huppert & Worster 1985) and, in principle, the thermal field can be determined by
solving the heat conservation equation augmented by a source term related to the
internal release of latent heat (Worster 2000). However, in our modelling here, we use
the simple approximation of a linear temperature profile, guided by our laboratory
experiments, as follows.

Because of the constraints on space within the magnet and the need to avoid using
metallic components within the sample, no temperature measurements were made
during the MRI experiments. We therefore conducted separate, similar experiments
in the laboratory, where detailed measurements and visual observation could be made.
In figure 10(a), we see a typical temperature record in the cubic tank with thermistors
placed at different vertical positions during an experiment with a water–sucrose
solution of initial concentration c0 = 0.2, cooled at the top at Tb = −20 ◦C. The liquid
cools to the liquidus temperature within about two hours.

In figure 10(b), a record of the liquid temperature inside the cylindrical apparatus
used in the MRI is shown as a function of time for the two extreme sucrose
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concentrations (c0 = 0.1 and c0 = 0.4) maintained at the top at −20 ◦C and with the
cooling jacket set at −3 ◦C. The liquidus temperature in each case is depicted by
the dashed line and it can be seen that the liquid temperature is above the liquidus
temperature, which implies that the heat gain in this system is significant even with
the surrounding cooling jacket. This effect is stronger for higher concentration (more
than 2 ◦C for c0 = 0.4) as the cooling jacket temperature is then above the liquidus
temperature.

Measurement of the temperature just below the glass plate gave a final temperature
T ≈ −16 ◦C, reached about 180 min after the commencement of the ethylene glycol
circulation. We can then suppose that the experimental cooling temperature Tb was
between −16 ◦C and −20 ◦C.

Based on these observations and noting that the Rayleigh number within the liquid
region was about 106, well above the critical value for convective instability to develop,
we suppose that the liquid region is well mixed, of constant and uniform temperature
equal to the liquidus temperature T�(c0) at the initial concentration c0 (Kerr et al.
1989). Moreover, given that the Stefan number S = L/(cp�T ), where �T = T�(c0)−Tb,
is large (about 7) in our experiments, we assume a linear temperature field in the
mush so that

T = Tb + [T�(c0) − Tb]
z

h(t)
, (6.1)

where h(t) is the thickness of the mushy layer.
Solute conservation is given by

ρl(1 − φ)
∂c

∂t
+ ρlu · ∇c = ρsc

∂φ

∂t
, (6.2)

if we suppose that chemical diffusion can be neglected compared with thermal
diffusion, and we suppose that the mush is in local thermodynamic equilibrium, so
the concentration and temperature fields are linked by the liquidus relationship

c = c�(T ). (6.3)

The local mean density is given by ρ = φρs + (1 − φ)ρl , where the subscripts s and
l denote solid and liquid respectively. Conservation of mass is then given by

∂ρ

∂t
+ ∇ · (ρlu) = 0, (6.4)

where u is the volume flux of interstitial liquid per unit of area of mushy layer. We
considered the variation of the density with the physical state because Chiareli &
Worster (1992) have shown that neglect of this can lead to an error of 10 % in the
prediction of the solid fraction. However, we use the Boussinesq approximation and
consider ρl = ρl[c0, TL(c0)] to be independent of temperature and concentration.

In the absence of buoyancy-driven convection in the mushy layer, equations (6.2)
and (6.4) can be solved for the velocity and the solid-fraction distribution subject to
boundary conditions of zero velocity at the cooling plate and zero solid fraction at
the mush–liquid interface.

The thickness of the mushy layer h(t) is in principle determined by conservation of
heat at the mush–liquid interface, expressed by

ρsLḣφ = km∇T |m − FT , (6.5)

where km is the mean thermal conductivity of the mushy layer, FT is the heat flux from
the liquid region and the dot denotes differentiation with respect to time. However,
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in this study we do not have a means to determine FT and so simply determine the
various fields in terms of h(t).

Buoyancy-driven flow in the mushy layer, when it occurs, is governed by Darcy’s
equation

µ

Π
v = −∇p + �ρg, (6.6)

where p is the dynamical liquid pressure, �ρ = ρ(c, T ) − ρ(c0, T�(c0)) and Π is the
permeability of the mushy layer. Scaling of the governing equations (Worster 2000)
reveals that convection in the mushy layer is dictated by a porous-medium Rayleigh
number

Ra =
�ρgΠh

µκ
, (6.7)

where µ and Π are the mean viscosity and permeability of the layer. This Rayleigh
number has been used successfully to correlate data relating to the onset of convection
in sea ice (for example) by Wettlaufer et al. (1997). The Rayleigh number increases
during our experiments as h increases, and can exceed the critical threshold for the
onset of convection.

When there is no convection in the mushy layer, its structure depends only on the
vertical position from the cooling plate z. It was shown by Huppert & Worster (1985)
that the mushy layer then evolves in a self-similar fashion with similarity variable

ξ = z/h(t), (6.8)

while the mushy-layer thickness increases proportionally to the square root of time,

h = 2λ
√

κt, (6.9)

where λ is a parameter that depends on the initial concentration of the solution and
the boundary temperatures (Worster 2000).

Using this similarity variable, considering the linear temperature profile and scaling
the vertical velocity w =

√
(κ/t)f (µ), we obtain the non-dimensional governing

equations

φ′ =
c′

rc

(
1 − φ − f

λξ

)
, f ′ = ξλ(r − 1)φ′, (6.10)

where r = ρs/ρl , primes denote differentiation with respect to ξ ,

c = c�(T ) and T = Tb + �T ξ. (6.11)

The boundary conditions are that f =0 at the cooled boundary ξ = 0 and φ = 0 at
the mush–liquid interface ξ = 1.

However, if we consider that the transport of solute into the mush due to the ice
expansion is small (u · ∇C is negligible), then equation (6.2) can be integrated directly
to give the porosity as a function of the local concentration

φ = 1 −
(

c0

c

)1/r

(6.12)

(Flemings & Nereo 1967), where c = c(ξ ) is determined from (6.11).
Equations (6.10) were solved numerically for φ and f using a shooting method,

and the results compared with equation (6.12). With our parameters (Tb = −17 ◦C and
c0 varying from 0.1 to 0.4) the relative error in the porosity is everywhere less than
about 8 %, decreasing away from the plate and with increasing initial concentration.
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Figure 11. Square of the thickness of the mushy layer as a function of time for (a) the
laboratory and (b) the MRI experiments. The laboratory cubic tank is represented by full
squares and the cylindrical tank by circles, with triangles for the MRI experimental study. The
concentration and the top-plate temperature are indicated. The line (dashed for the cube and
full for the cylinder) represent the best fit given by (6.9).

The absolute error in porosity is no more than 0.023 in all cases. We therefore use
the analytical result (6.12) to discuss our experimental results.

7. Quantitative results
7.1. Thickness of the mushy layer

The time variation of the thickness of the mushy layer was measured during
laboratory experiments using the cubic and cylindrical tanks as well as during the
MRI experiment. In the cubic tank the thickness was measured directly. In the MRI
experiments, we used the porosity data, which can be seen for example in figure 9.
The transition zone corresponding to the interface is diffuse and so to determine the
position of the interface we use the porosity data above this zone and extrapolate
them to obtain the intersection with the porosity χ = 1 corresponding to the liquid.
This is a valid process given that the porosity tends smoothly to 1 as the mush–liquid
interface is approached (Worster 1986, 2000).

The results obtained are shown in figure 11, where the square of the mushy layer
thickness is presented as a function of time for the laboratory and MRI experiments.
It can be seen on this graph that at early times all the experiments are described well
by (6.9), with a coefficient λ dependent on the conditions of the experiment. It can
also be seen that after some time, for some experiments in the cylindrical tank, the
thickness variation departs from this trend to follow a slower growth. The time at
which the deviation occurs seems not to be reproducible. For example, in figure 11
it can be seen that in the laboratory experiment there is no visible deviation after
8 hours whereas for the same experimental conditions (c0 = 0.2 and Tb ≈ −16 ◦C) in
the MRI we observe a deviation after 2 hours of cooling. The times of deviation for
c0 = 0.1, 0.2, 0.3 and c0 = 0.4 are about 3, 2, 1 and 1 hours after the beginning of
solidification respectively. We believe that this effect is due to heat exchange with the
surroundings rather than to internal dynamics such as the onset of convection.

7.2. Solid-fraction distribution

Before the onset of convection and the appearance of chimneys inside the mushy
layer, we expect the porosity to follow a self-similar variation given by (6.11) and
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Figure 12. Similarity solutions of the porosity χ as a function of ξ = z/h(t) for the four
different concentrations at early times: c0 = 0.1 and 0.75 < t < 1.8 h (8 sets of data, circles);
c0 = 0.2 and 1.4< t < 3.2 h (7 sets of data, squares); c0 = 0.3 and 0.8< t < 2.7 h (10 sets of
data, triangles); and c0 = 0.4 and 0.7< t < 3.7 h (12 sets of data, crosses). The prediction of
the model given by (6.12) with Tb = −17 ◦C is plotted as a continuous curve for each initial
concentration.

(6.12). Note that this result relies only on the concentration field varying according
to the liquidus between c�(Tb) and c0, and so does not depend on the temperature
of the melt region nor on the variation of h(t). To check this hypothesis, we plot
the similarity variable ξ as a function of the porosity in figure 12 for the first few
hours of each experiment. For each concentration, all the data from these early times
collapse extremely well onto the theoretical curve given by (6.12), which confirms that
the system does indeed evolve without significant transport of solute initially. The
predictions of (6.12) were made using a value of Tb = −17 ◦C, which is in the range
−20 ◦C< Tb < −16 ◦C suggested by measurement.

The complete sets of porosity data are shown in figure 13. We observe a deviation
from the similarity solution after about 2 hours for c0 = 0.1 and about 4 hours for
c0 = 0.2. The porosity decreases in the lower part of the mushy layer and the deviation
increases with time. We interpret this effect as a signature of convection inside the
mush which leads to the formation of chimneys. Indeed when convection occurs, fresh
liquid is driven into the mush which leads to more solidification of ice and a decrease
of the horizontally averaged porosity even though there are channels free of ice.

7.3. Onset of convection

In their experiments, Wettlaufer et al. (1997) correlated the evolution of the mean
porosity inside the mushy layer with the onset of convection. To deduce the
mean (vertically averaged) solid fraction inside the mushy layer they used solute
conservation to obtain

φE =
ρeceVe + (ρlcl − ρ0c0)V0 + (ρmcm − ρlcl)hAm

ρmcm hAm

, (7.1)
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Figure 13. Similarity variable ξ = z/h(t) as a function of porosity for the four experiments:
c0 = 0.1 (28 curves from 0.8 h to 17.9 h); c0 = 0.2 (20 curves from 1.4 h to 15.1 h); c0 = 0.3 (9
curves from 0.8 h to 2.7 h); c0 = 0.4 (12 curves from 0.6 h to 3 h). The time increase is from
right to left.

where V and A denote the volume and horizontal area of a region and the indices
e, l, m, s, 0 designate the expansion tube, the liquid, mush, solid and initial liquid. We
used equation (7.1) to determine the mean solid fraction in our laboratory experiments
but we used our MRI data to calculate the mean solid fraction much more accurately
by evaluating

φE =

∫ 1

0

φ dξ,

using a cubic-spline interpolation of the porosity data.
The mean solid fraction as a function of the mush thickness is shown in figure 14(a)

for the four MRI experiments. We can see that at early times the mean solid fraction is
approximately constant with a value decreasing as the initial concentration increases.
Using (6.12) we can deduce theoretically the mean porosity of the mush before
convection begins:

φT ≈ 1 −
∫ 1

0

(c0

c

)1/r

dξ. (7.2)

In figure 14(b) the mean experimental solid fraction φE at early times is shown
as a function of the theoretical value φT for the laboratory cubic and cylindrical
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Figure 14. (a) Mean solid fraction across the mush as a function of the mush thickness for
different solutions (c0 = 0.1, 0.2, 0.3 and 0.4 from top to bottom). The horizontal lines represent
the best constant fit for the solid fraction at early time (respectively 0.78, 0.685, 0.485 and 0.38)
and the vertical lines represent the position of the top of the chimneys. (b) Experimental mean
solid fraction at early times compared with the theoretical one (7.2) for the cubic (square), the
cylindrical (circle) and the MRI (triangle) experiments.

tank experiments as well as for the MRI experiment. The straight line of unit slope
indicates good agreement between theory and experiments, particularly for the MRI
experiments.

Once a critical thickness is reached, we observe an increase of the solid fraction.
The thickness at which this deviation occurs could indicate the onset of convection.
The position of the top of the chimneys (i.e. the highest level to which chimneys
extend) is also plotted in figure 14(a). We deduce, for example, that in the system
with initial concentration c0 = 0.2, convection began when the mushy layer was about
4 cm thick but is likely to have extended only to within 1 cm of the cooled plate.
Therefore, the thickness of the convecting region, and the value of h relevant to the
Rayleigh number (6.7) is only about 3 cm in this case.

There are two competing effects of the initial concentration. When the concentration
is low, the permeability is low, so convection is retarded. When the concentration
is high, the compositional difference across the mushy layer is small (for a given
cold-plate temperature), so the driving density contrast is small and convection
is again weak. The strongest effects of convection are seen at intermediate initial
concentrations (here c0 = 0.2).

7.4. Bulk concentration

An important property of solidified alloys is the local bulk concentration c̄(z) averaged
over the microstructure. Variations in bulk concentration are called macrosegregation
in the context of metallurgical castings, and determine the gross salinity and
associated physical properties of sea ice, for example. During solidification, the bulk
concentration is the local average concentration over the solid and liquid phases given
by

c̄(z) =
ρl

ρ̄
χc =

(
1 +

rφ

1 − φ

)−1

c, (7.3)

where c is the brine concentration inside the mush, depending only on the temperature
via the liquidus relationship. The bulk concentration is plotted as a function of ξ in
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Figure 15. Similarity variable ξ = z/h(t) versus bulk concentration c̄ for the four experiments:
c0 = 0.1 (28 curves from 0.8 h to 17.9 h); c0 = 0.2 (20 curves from 1.4 h to 15.1 h); c0 = 0.3
(9 curves from 0.8 h to 2.7 h); c0 = 0.4 (12 curves from 0.6 h to 3 h). The time increase is from
right to left.

figure 15, using values of φ measured using MRI and the assumed linear temperature
profile, for the four initial concentrations and the full range of experiments.

We clearly see that at early times the bulk concentration remains uniform and
constant at the initial concentration and then, after a certain time depending on the
initial concentration, we observe a deviation on the lower part of the curve towards
lower concentrations. The total sucrose content of the mushy layer decreases in time,
which shows that there is convective exchange between the mushy layer and the liquid
region. The deviation seems restricted to the bottom part of the mushy layer, which
is consistent with the MR images (figure 7), in which we see that the chimneys do
not penetrate the whole mushy layer.

Indeed, if we subtract the first curve and plot this concentration difference as a
function of the vertical position instead of the similarity variable we obtain the graphs
plotted in figure 16. We observe that, except for their lower part close to the mush–
liquid interface, all the curves appear to superimpose. This suggests that significant
convection in this system is confined to the very lowest part of the mushy layer and
that most of the chimney visualized in the final image of figure 8, for example, is in
fact inactive. Initially, this is likely to be a consequence of the fact that the viscosity
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Figure 16. Difference between the local concentration (c̄(z) deduced using equation (7.3))
and the initial concentration as a function of the vertical position (z) for three of the four
experiments: (a) c0 = 0.1 (28 curves from 0.8 h to 17.9 h); (b) c0 = 0.2 (20 curves from 1.4 h to
15.1 h); (c) c0 = 0.3 (9 curves from 0.8 h to 2.7 h); (d) c0 = 0.4 (11 curves from 0.7 h to 3.3 h).
The time increase is from top to bottom. The horizontal lines correspond to the position of
the top of the deeper chimneys.

is a strong function of composition. At later times it reflects the fact that convection
causes the permeability to decrease, which causes the active zone to be close to the
mush–liquid interface (e.g. Worster 1991).

Some preliminary confirmation of this comes from images of the vertical component
of velocity, obtained using the MR velocity-imaging technique described at the end
of § 4. Examples are given in figure 17, which shows in a sequence of horizontal
slices the porosity and the corresponding velocity images. Note that we are able to
measure a velocity only close to the interface with the liquid and that even there
not all chimneys are actively convecting. In those chimneys that are convecting, the
maximum vertical velocity is about 200 µms−1.

Our measurements of bulk concentration can be used in another way to deduce
the thickness of the actively convecting region of the mushy layer. Consider the
temporal evolution of bulk composition in a fixed horizontal slice, at z = h0 say.
Figure 18(a) illustrates this for a slice located at h0 = 54 mm from the cooling plate in
the system with initial concentration c0 = 0.1. We see that the bulk concentration at
this position remains constant until time t1 ≈ 5.5 h, when the mush has a thickness h1

say. Subsequently, the bulk concentration decreases until time t2 ≈ 9.1 h after which
it again remains constant, at c̄ = c2 say. Let h2 = h(t2). Then we can deduce that the
convecting zone had a thickness greater than h1 − h0 at the time t1 that convection
began to affect the horizontal slice at z = h0, and had thickness �h= h2 − h0 at time
t2. Note that if h0 is greater than the thickness of the mushy layer at the time that
convection began then h1 =h0. In this case, the constant bulk concentration before t1
simply reflects the fact that the slice is in the liquid region, and the bulk concentration
of the slice begins to decrease as soon as it is within the mushy layer.

Note from figure 18(b) that for times greater than t2, the porosity is well represented
by (6.12) using c2 in place of c0. On the other hand, it seems that the structure of the
mushy layer continues to evolve at times greater than t2. This is perhaps suggested
by figure 18(c), which appears to show the area occupied by chimneys continuing to
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Figure 17. (a–d) Four intensity images identifying the position of the chimneys at different
heights in the mushy layer (as shown in the side view on the right) and (e–h) corresponding
velocity images at the same vertical position and time. The chimneys are seen to be active only
close to the growing interface.

evolve, and the images below which show some qualitative evolution. This could be
due to the fact that, as the mushy layer is growing, the local temperature is changing.
On the other hand, it is possible that the convection continues and that the porosity
data are not sensitive enough to show this evolution. The data available do not permit
us to distinguish between these two hypotheses.

In figure 19, h2 is plotted as a function of h0 for the initial concentrations c0 = 0.1, 0.2
and 0.3 and all the data can be fitted by a straight line corresponding to h2 ≈ 1.23h0.
Therefore it seems that the thickness of the actively convecting zone in this system is
only about 23 % of the total thickness of the mushy layer.

This confinement could be a consequence of the low permeability in the upper
part of the mushy layer (Worster 1992) but is more likely to result from the
strong dependence of the viscosity of the sucrose solutions on their temperature and
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Figure 18. (a) Local concentration, (b) porosity and (c) area occupied by chimneys as
functions of time for a horizontal slice located 54mm away from the cooling plate with an initial
concentration c0 = 0.1, and (d) the corresponding medium-resolution images. The horizontal
lines in (a) correspond to c0 ≈ 0.108 and c2 ≈ 0.087. The curves in (b) correspond to the
solutions of (6.12) with c0 (dashed) and c2 (solid) as initial concentrations. The area occupied
by chimneys (c) was deduced from the medium- and high-resolution images by subtracting
the mean background and applying a threshold on pixel intensity to isolate ‘liquid’ regions.
We counted as chimneys only those contiguous liquid regions with area in excess of 0.3 mm2.

concentration resulting in a ‘viscous stagnant lid’ as studied by Davaille & Jaupart
(1994) in the case of a pure liquid. Note, for example, that the convecting thickness
seems to be rather insensitive to the porosity, which varies from around 0.2 to around
0.6 in our various experiments. On the other hand, the dynamic viscosity of the inter-
stitial liquid varies from 1 to 104 mPa s from the bottom to the top of the mushy layer.

When convection occurs, the momentum equation is given by (6.6). If we suppose
that convection begins when the driving density difference becomes comparable with
the viscous dissipation, we obtain a condition for the onset of convection at a critical
value of the porous Rayleigh number

Ra =
�ρgΠh

µκ
, (7.4)
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Figure 19. Mush thickness h2 when the convection stops as a function of h0. The circles,
squares and triangles correspond respectively to the initial concentrations c0 = 0.1, 0.2 and 0.3.
The straight line corresponds to h2 = 1.23h0.

where µ and Π are reference values for the viscosity and permeability (Worster 1992).
The permeability (being a function of the solid fraction), the viscosity and the density
difference are all functions of vertical position. To evaluate the influence of these
variations we can calculate a Rayleigh number based on a supposed convecting zone
of thickness hζ at the base of the mushy layer, where ζ = 1 − ξ is a dimensionless
thickness. In terms of ζ , the supposed linear temperature field is given by T = T�(c0)−
�T ζ . A (minimum) local Rayleigh number for the convecting zones is then

Raζ =
α�T ζ g Π (ζ ) hζ

µ(ζ ) κ
, (7.5)

where α is the constant of proportionality between density and temperature variations
in a linear equation of state. Equation (2.5) is used to evaluate µ(ζ ), while the
permeability is assumed to be given by

Π = d2χ3/12, (7.6)

which is appropriate to a plate-like geometry, where d is the distance between the
centres of the plates. With these assumptions, the leading-order variation of the local
Rayleigh number is given by

Raζ ∝ ζ 2 e−�T ζ/Tµ, (7.7)

which has a maximum at

ζmax = 2Tµ/�T . (7.8)

Given that Tµ ≈ 1.92 ◦C, from (2.5), and �T ≈ 15 ◦C, (7.8) gives ζmax ≈ 0.25. This is
in good agreement with our experimental inference that the actively convecting zone
was only about 23 % of the total mushy layer.
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Figure 20. The Rayleigh number Raζ characteristic of the actively convecting zone divided
by the mush thickness h as a function of ζ for Tb = −17 ◦C and three different initial
concentrations.
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Figure 21. Evolution of the number of chimneys, total area of chimneys and mean area as
a function of the position in the sample from the top plate after 11.3 h of solidification. The
circles correspond to initial concentration c0 = 0.1 and the squares to c0 = 0.2. The thickness
of the mushy layer was respectively 6 cm and 4 cm in the two cases.

We plot Raζ/h as a function of ζ for Tb = −17 ◦C and the three different initial
concentrations in figure 20. The value of the maximum shows that the critical Rayleigh
number in our case would be about 300, whereas Tait & Jaupart (1992) evaluate
it to be around 25, but this value is highly dependent on the model chosen for the
permeability.

7.5. Evolution of the chimneys

The evolution of the mushy layer can be additionally quantified by the evolution
of its structure, for example the number of chimneys and their size. To make these
measurements, we use the high-resolution images, and we process them as described
in the caption to figure 18 to obtain the total area at a given position as a function of
time. In figure 21 the evolution of the number of chimneys, the total area of chimneys
and the mean area per chimney as a function of the position in the sample after 11.3 h
of solidification is plotted for two initial concentrations c0 = 0.1 and 0.2. Note that
the thickness of the mushy layer was 6 cm and 4 cm respectively in the two cases. We
see that, within the mushy layer, the number and the total area of chimneys increase
with the vertical position, whereas the mean area is more or less constant with a mean
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value of about 0.85 mm2 which corresponds to a typical diameter of about 1mm. The
typical spacing between two chimneys was measured to be about 7 mm.

8. Conclusions
Using MRI techniques, we have obtained images of the internal structure of a

mushy layer during the solidification of ice from a sucrose solution. We are able to
distinguish the ice platelet structure as well as observe the formation and evolution
of the chimneys. The chimneys are branched and do not penetrate the whole mush in
this system. Quantitative measurements of the local porosity distribution were made.
The porosity data can be fitted by a similarity curve using a simple argument of local
conservation of solute when there is no convection. Once convection starts, there is
a deviation from this similarity solution toward a less-porous mushy layer, which
can be explained by exchange of solute between the mushy layer and the liquid. The
convection in our experiment seems to be limited to the lower part of the mushy layer
and we have shown that a possible explanation is that the formation of a stagnant
viscous region in the cold upper part of the layer causes convection to cease at a given
vertical position as the mushy layer grows. Finally, we have shown that MRI is able
to provide quantitative measurements of the liquid velocity inside the chimneys. These
data provide us with new information about what is happening inside a mushy layer
during solidification and in particular gives us information relating to convection
inside the layer. The MRI technique opens up a new area of investigation in this
subject. In future work we aim to develop this technique to obtain further quantitative
data on the evolution of porosity during convection and the mass flux in chimneys
and mush using more quantitative velocity images.

We thank Dr M. A. Hallworth for his invaluable contribution to the experimental
work. P. A. was supported by a Marie Curie Fellowship.
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